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approach to the problem of extrapolating power series. We suggest a well-defined way to 
map the extrapolation problem onto a moment problem, and show that the use of additional 
information about the function being extrapolated (such as asymptotic behaviour For large 
arguments) is important to obtaining accurate extrapolations. We apply the method to  the 
virial expansion for the classical hard sphere equation o f  state, the quantum harmonic 
osci l la to~ with octic perturbation and the symmetric Anderson model of relevance to 
magnetic impurities io metals. In each case the  method yields excellent pointwise est imate  
o f t h e  function being extrapolated. 

1. Introduction 

The problem of extrapolation or analytic continuation of power series is important in 
v i r ~ u n t i y  a i  USIUD V I  LIICUISIILLL p u y ~ t c s .  ELI C U L L O C ~ ~ ~ C O  IIMUCX p i i y s i ~ b ,  cnrrapuiauun 
is intimately related to problems in critical phenomena and can be related to the closure 
of hierarchies in field theories. In other areas, perturbation theory often produces a 
power series in some coupling parameter which is of primary interest for large values 
of the coupling parameter. It is therefore of considerable interest to develop new 
attacks on the extrapolation problem. This paper represents a step towards a unified 

(maxent)) to the problem. A preliminary report of some of this work is given in Drabold 
and Jones (1991). 

Other workers have noted the possibility of using maxent as an extrapolation 
technique. The idea was first mentioned by Mead and Papanicolaou (1984), and first 
implemented by Bender et a/ (1987) for the case of a harmonic quantum oscillator 
with octic perturbation. The basic idea was to map the extrapolation problem onto a 
moment problem, then the moment problem was solved using maximum entropy. 
While this approach is reasonable, it makes no attempt to address the question of how 
to choose an integral representation (mapping). This is important, since the extrapola- 
tion depends upon this choice. Here, we use information about asymptotic behaviour 
to choose the kernel. We show that such information can greatly improve maxent 
extrapolations. 

The rest of this paper is organized as follows. Section 2 outlines our formulation 
of the extrapolation problem as one of missing information. Section 3 provides three 
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examples of the technique from diverse areas of physics. We present a maximum- 
entropy equation of state for hard spheres from the virial expansion, an improved 
version of the octic oscillator problem, and an extrapolation of the spin susceptibility 
of the symmetric Anderson model (Anderson 1961) of magnetic impurities in metals. 

D A Drabold and G L Jones 

2. Maximum-entropy and power series extrapolation 

The method of maximum entropy provides a variational principle which yields an 
explicit recipe for inferring a ‘best guess’ for a positive, additive distribution (Skilling 
1989) (essentially a probability distribution, either discrete or continuous) when we 
possess incomplete testable information about the distribution (Jaynes 1983). In the 
case of a discrete distribution pi, this formal procedure consists of maximizing the 
entropy functional: 

subject to whatever information is available in the problem. In many instances, this 
constrained optimization problem is implemented using Lagrange multipliers in the 
expected way. The continuous analogue of equation (1) is 

Hc= - dxp(x)  l ~ g [ p ( x ) l ~ ( ~ ) l  (2) 1 
where u ( x )  is a measure (Jaynes 1968,1983). Shannon and Weaver (1962) have proved 
that the form (1) is unique given some highly plausible requirements on Ifdd. In some 
contexts (statistical mechanics for example), entropy can also be thought of as a 
measure of the degeneracy of solutions, and the maximum-entropy solution is that 
solution which has the highest multiplicity consistent with the constraints (incomplete 
information) available. 

At present maxent is being used with success in image reconstruction (for example 
Gull and Daniel1 1979), analysis of noisy experimental data (Gull 1989), and analysis 
of computer simulated data (Silver el a/ 1990). It is well beyond the scope of this 
paper to further discuss maxent or  its applications. We direct the reader to the 
burgeoning literature on the subject. 

We now consider the application of maxent to extrapolation. Consider the following 
rather general problem. 

Suppose thatf(x) is analytic in a neighbourhood of x = 0. Given Taylor coefficients 
of f  :{an}:=,,, and additional information (the asymptotic behaviour of a! as /-+CO, or  
of f ( x ) ,  x t x , , ,  etc), find an accurate approximate representation for.f(x),  for all x 
in the domain of .f 

In this section we will map the extrapolation problem on to a certain type Of 
moment problem, discuss the necessary and sufficient conditions for the existence of 
solutions to the moment problem on the finite interval, and stress the importance 
of using prior information in forming an extrapolation. We are motivated to work with 
an integral representation of the extrapolated series because it  is necessary to translate 
the purely local information given by the Taylor coefficients into global constraints on 
maxent: this is somewhat like introducing pixel-pixel correlations in the image recon- 
struction problem (Gull 1989). Maxent does not directly provide useful answers for 
detailed information concerning one point. 
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We begin by assuming thatf may be expressed in the form of an  integral representa- 
tion with multiplicative kernel K :  

f ( . X ) = J  d < P x ( l ) K ( x l )  (3 )  
0 

such that pK is a positive, additive density: conditions for which this is the case are 
disccssed !.!er. “r is scme in!er.iz! on the rea! !ine. !n order to incorpcr~!e thc 
information we know (the Taylor coefficients), we Taylor expand the LHS of equation 
(3),  and the kernel on the RHS. One easily obtains 

01 = / = 0 , 1 , 2  ,..., N 

where kl are the Taylor coefficients of the kernel K and 

This is an ( N  + 1)-constraint moment problem for the function pK, something which 
maxent is very well suited to (Collins and  Wragg 1977, Mead and Papanicolaou 1984). 
It is a simple exercise to see that the maxent solution to the moment problem takes 
the form 

(6) 

where A! are chosen to satisfy equations (4) a n d  (5). For N > 2, !he A, are obtained 
numerically. 

An important point for the implementation of this method, and indeed for any 
maxent calculations involving the finite-interval (Hausdorff) moment problem is that 
practically useful necessary and sufficient conditions on the moments are known for 
the existence of a positive density pw (Akheizer 1965). To determine whether a moment 
problem is well posed (meaning here that p > 0), we may apply the conditions (Akheizer 
1965, Drabold and Jones 1991) to the given moments and interval. These conditions 
form one  criterion in the selection of appropriate integral representations. In  this paper 
the indicated intervals of integration are semi-infinite. The finite interval conditions 
are applicable, however, because in each case the moment problem could be formulated 
with n o  error with a finite cutoff because the integrand becomes exponentially small. 

The  heart of the problem is choosing a parricular kernel K :  in practice there are 
continuous families of kernels which lead to soluble moment problems, and to some- 
what different extrapolations. The most natural procedure is to adopt an integral 
representation which ‘builds in’ all the information we have (asymptotic behaviour 
for this paper, though other kinds of information may be considered). The choice of 
the kernel is thus determined by the problem we are considering, and a general recipe 
for selecting the kernel cannot be given without information in addition to a finite set 
of Taylor coefficients. This cannot usually uniquelj, specify K ,  of course, but provides 
important guidance in selecting appropriate kernels. A possible criterion for selecting 
a unique kernel within a restricted family is discussed in Drabold and Jones (1991) 
and briefly described in section 3.3 

When we have some expectations about the function f we wish to extrapolate, one 
chooses the kernel K (  U )  which has the qualitative features expected of f  ( U): the kernel 
can be chosen to be an  intelligent ad-hoc guess for 1: The rationale for this is: if we 
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guessed the kernel to be the exacrf; we should obviously find that the positive, additive 
density would just be 
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P K ( i ) = m - l )  (7) 
from equation (3). The Taylor coefficients off 'correct' our preliminary guess for f If 
our kernel has Taylor coefficients close to those of 1; we find that p ( i )  is sharply 
localized near J =  1. 

Having fixed upon a kernel K, our extrapolation f o r f ( x )  takes the form 

This is a rather easy program to implement (at least after the numerical analysis 
for solving the indicated moment problems is complete). We have found that rather 
simple choices of the kernel lead to well posed maxent moment problems, and that 
the extrapolated estimates for . f i x )  are often quite weakly dependent upon K, the 
differences between different kernels being largely absorbed into the positive weight 
function p K .  An additional point is that there is nothing restricting the choice of kernel 
to the multiplicative form given in equation (3): kernels which are not functions of 
the product form K ( x i )  just lead to a 'generalized moment problem' in which the 
constraint equations do not involve simple powers, but more complicated functions. 
For some problems the form of the expansion would naturally lead to the generalized 
case. For example, in physics kemels of the form K ( x - i )  are very common, and lead 
to a generalized moment problem. Examples of this type are currently under study. 

One aspect of this method needs to be treated with care. Because we are working 
with continuous densities, we must be aware of the choice of measure (Jaynes 1968). 
For the integral representation above equation (3) the measure is fixed by our choice 
of representation: this is an example of the use of our prior expectations about the 
series we are extrapolating. 

In  outline, the numerical implementation of the method is the following. For a 
given kernel and interval, apply the moment conditions (appendix 1 of Drabold and 
Jones 1991) to see whether the problem is well posed or not. These simple conditions, 
which involve the diagonalization of a pair of small matrices, are of great guidance 
in the choice of kernels, and kernels for which the moment problem may be addressed. 
If the spectrum of the moment-test matrices is non-negative, we proceed to solve a 
discrete approximation to the linear maxent problem using the method of Bretthorst 
(1987). and then polish the Lagrange multipliers for the continuous problem using an 
improved version of the original Newton minimization method (Mead and 
Papanicolaou 1984). The power series is then easily extrapolated with a numerical 
quadrature of equation (8). This method is quite stable for up to about 12 coefficients, 
at which point the continuous polish can sometimes become unstable. Turek (1988) 
has recently suggested an improved numerical procedure using orthogonal polynomials 
instead of raw powers which alleviates this instability. 

3. Examples 

3.1. Anhormonic oscillofor: using prior information 

In this section we briefly discuss an improved extrapolation of the ground state 
eigenvalue E , ( g )  of the quantum harmonic oscillator with octic perturbation. The 
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Hamiltonian is 
% = p 2 / 2  + x2/2+ gxx. (9) 

This problem has been studied by Bender et al (1987) using maxent and a particular 
integral representation of E&). These authors have used the Rayleigh-Schrodinger 
perturbation expansion for E,(g), which yields a divergent power series i n  the coupling 
constant: 

m 

€ o ( g ) - - f +  1 ( - l )" 'A,g" g+0.  (10) 
" = I  

The coetlicients grow exceedingly fast (A ,  - ( 3 n ) ! ) .  Using five expansion coefficients, 
they found results much improved over Pad6 extrapolations. Here, we show that using 
an additional easily obtained (Hioe et a /  1976) piece of information concerning the 
asymptotic behaviour of E&), namely that 

E o k ) - g ' / '  g+* (11) 
greatly improves the earlier extrapolation, better than splitting the difference between 
the exact (numerically obtained) result and the earlier maxent extrapolation. Following 
Bender el a1 (1987), we reconstruct the function 

m g ) = t ~ o ( g ) - f l l g  (12) 

rather than Eo directly, The known asymptotic behaviour of Eo implies that 
&(g)  - g-4/5, leading us to choose the integral representation 

F , ( g ) = ~ ~ ~ d i p , ( i ) ( l + g i ) "  (13) 

with a = -:. Bender et a /  used the representation (equation (13)) with a = -1 .  Follow- 
ing the procedure indicated, we obtain the results presented in figure 1 along with the 
result of Bender and coworkers and the exact result (Hioe et a1 1976) The Lagrange 
multipliers are given in appendix 1. It is clear tha the choice a = - 2  produces a much 

2 ! 
a l p p = - l  . 

- 1  
-10 -5 0 5 10 

~n [ coupling constant g 1 
Figure 1. Octic oscillator ground state eigenvalue vecsus coupling consvanl 8. 
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better fit than that of Bender et al. It is also apparent that the prefactor of the asymptotic 
behaviour (equation (11)) is different for the exact answer and our representation. It 
i s  not possible with the simple representation (equation (13)) to obtain the asymptotic 
behaviour exactly. We are presently investigating a broader class of kernels so that the 
prefactor can be exactly obtained. Note that for this badly divergent series, the inclusion 
of information concerning large-g behaviour improves the extrapolation, even for 
rather small g. 

3.2. Spin susceptibility of the symmetric Anderson model 

As another example of this method, we use the method outlined above to extrapolate 
the reduced spin susceptibility ,y,(u) of the symmetric Anderson model of magnetic 
impurities in metals. Here, U = U/,& and U<< (>>)A is the weak (strong) correlation 
regime. Here, we take the expansion of Yamada (1975) and Zlatic and Horvatic (1983): 

& ( U ) =  z G". (14) 

The idea is to use the maxent method to estimate xs for the strong correlation regime 
from the first few perturbation coefficients obtained from the u + O  limit. To some 
extent this exercise is academic, since the exact solution to the problem is known from 
Bethe-ansatz techniques, and Zlatic and Horvatic have been able to develop recurrence 
relations on the expansion coefficients C,, which allow these coefficients to be computed 
to any order. Still the problem is of interest as an illustration of the approach and as 
useful input into the important asymmetric Anderson model (Horvatic and Zlatic 1985) 
for which no exact solution i s  known, but where an analogous approach to the one 
presented here is possible. In  table 1 we present the first several C,, obtained from 
the recurrence relation of Zlatic and Horvatic (1983). 

D A Drabold and G L Jones 

02 

n = o  

Table 1. Expansion coefficients for the symmetric Anderson model. 

0 1.0 
1 I .0 
2 0.532 598 
3 0.195 593 
4 5.501 868E-2 
5 1.256072E-2 
6 2.414885E-3 
7 4.01 I 442E - 4 

As usual, our first task is to choose an appropriate kernel for our integral representa- 
tion equation (3). We choose a simple exponential kernel 

for the following reasons. (i) According to the notion that we should pick a kernel 
which is an educated guess for x , ,  we note that the Taylor expansion for x, has 
coefficients which resemble the expansion coefficients of e". (ii) On physical grounds 
it is clear that ,y,(u) i s  a rapidly increasing function of U. We may take the point Of 
view that we are making a crude guess for x. ,  and we use the principle of maximum 
entropy to systematically improve our primitive guess (by using Taylor coefficients as 

K ( x i )  =exp(xi)  (15) 
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input) for x.. These considerations lead us to the integral representation: 

x d u )  = Iom d i d 0  e"'. (16) 

We study this representation for three levels of input coefficients (five, seven and  nine 
Taylor coefficients (GI), and present the results of the extrapolation in table 2. For 
comparison, the exact Bethe ansatz is also provided. We note that the integral (equation 
(16)) is convergent because p dies faster than e"' diverges for i + m. The convergence 
to the exact result is remarkably rapid: the seven-coefficient maxent extrapolation is 
within 1% of the exact result for u s 6 ,  the nine-coefficient extrapolation is valid to 
U = 15 to the same level of accuracy. Of course these results are vastly superior to a 
simple truncation of the series (equation (14)) for appreciable U. These results suggest 
that the method may be  useful in the more difficult asymmetric case. 

Table 2. Manent extrapolations against Bethe ansatz solution for the symmetric Anderson 
model. Maxrnt extrapolations are from equation (16). The integer in parentheses is the 
number of Taylor coefficients used. 

U Bethe ansatc Maxent (5) Manent (7) Maxent (9)  

1 2.798 65 2.798 67 2.798 65 2.798 65 
3 24.83 45 24.8594 24.8348 24.8346 
5 242.167 244.111 242.219 242.113 
7 2 483.23 2 552.62 2 486.27 2 483.65 

10 85 949 94 070 86 503 86 U93 

3.3. Virial equation of statefor hard spheres 

It is well known that physical systems are almost always most easily described in 
various limits. In particular, it is much easier to treat the thermodynamics of a very 
dilute gas or  a close-packed solid than the difficult liquid state. In either limit there 
are important simplifications which allow progress on the problem. An important 
undertaking is the extension of the results from a limiting regime to the more difficult 
(intermediate) case. 

Using the methods of classical statistical mechanics it is possible to express the 
thermodynamic pressure as an  expansion in powers of the density of the gas (Grandy 
1988). It is reasonably straightforward to obtain the first few of these coefficients from 
analytical computation or  simulation for a given pair potential. Here, we will consider 
the case of a gas of classical hard spheres, and use maxent to sum the virial series for 
the pressure to obtain an  information theoretic equation of state for the system. If we 
set x = r,/v,,, where vo is the close-packing density of the spheres, then we expect the 
pressure p should have a singularity near x = 1 ,  and (presumably) monotonically 
increase from x=O. Using the method outlined above, our prior expectations about 
the reduced pressure P ( x )  ( = p V / N k T )  lead us to choose the one-parameter family 
of integral representations (indexed by a): 

d5"p,.(L)(l-xL)" (17) 
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where by the assumption that the pressure is singular near x =  1, we have as: -1. 
Because we expect the reduced pressure to have a simple pole, we would expect to 
formulate the problem with a = -2. To our surprise, we find that the moment problem 
is ill-posed for a a -10.5 (the eigenvalues of the moment-test matrices are not all 
positive). We are still left with selecting an  optimal kerne! from the one-parameter (a )  
family of integral representations (equation (17)). Within some given category of 
kernels it is possible to consider a maxent criterion for choosing the kernel as well a s  
the density p: by maximizing 

D A Drabold and G L Jones 

over kernels K. While it is clearthat this is not a substitute for using apriori information, 
it is a reasonable criterion for eliminating the ambiguity of selecting a kernel from a 
rpstric.!ed category of kerne!~. We have explained !his in de!ai! in Drahn!d a.nd Jones 
(1991) .  Here we merely repeat the result. Using the six known virial coefficients (Ree 
and Hoover 1967) we have found that the maximum entropy over the kernels K of 
equation ( 1 7 )  occurs at a - - 1 7 . 5 ,  or 

P I  

pext-P(x)  = J ’ dbp--17.5(5)(1 -x~)-”.’ .  (19) 

The Lagrange multipliers for the pe with maximum entropy are given in appendix 2. 
The extrapolation resulting from equation ( 1 9 )  is in close agreement with numerical 

simulations (Ree and Hoover 1967) (figure 2). It is worth contrasting the present work 
with Pad6 approximant continuations of the virial expansion. In the most comprehen- 
sive Pad6 treatment (Baker et a l 1 9 8 4 ) ,  27 different Pad6 continuations were constructed 
from the six known virial coefficients. Those Pad6 extrapolations which most resemble 
Monte Carlo or molecular dynamics data are then compared with the simulation ‘data’. 

-m 

1 I 
6 -  - maxent extropalation 

A simulation 

- ,. 
J 4 -  
P 

c 
Y 

- 

2 -  

0 0.2 0.4 0.6 0.8 1 .o 

Y 

Figure 2. Maxent virial equation of state. The solid curve is the exlrilpolation from equation 
(IO). the triangles are from computer experiments (Ree and Hoover 1967). 
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The Bernal random close packing density of x=O.87 is claimed to be extracted from 
two of the virial extrapolations. This is a somewhat questionable claim, since the 
authors also claim to see spinodal effects from some of the PadOs: presumably, however, 
there is only one branch of the hard sphere phase diagram which is represented by 
the virial coefficients. 

We have recently received a preprint of Wang et al(1991), w h o  have independently 
considered the hard sphere and hard disk problems. These authors also found a 
satisfactory maxent virial equation of state. However, they bypassed the question of 
selecting the kernel, offering no real justification for the form they chose, and comment 
that their representation was very sensitive to the values of the higher virial coefficients 
and they were not able to use the sixth virial coefficient at all. Our extrapolation 
suffered from none of these difficulties. As we have started above, the pointwise 
estimates tend to be fairly insensitive to the choice of the kernel, and our two 
extrapolations are reasonably similar, except for very high densities. For a complete 
discussion of our earlier work, see Drabold and Jones (1991). 

4. Conclusion 

In conclusion we have seen that maxent offers a useful approach to the extrapolation 
and analytic continuation problem. We have shown that the inclusion of information 
beyond the mere Taylor coefficients of an unknown function is crucial to obtaining 
an accurate fit. The method is in no way limited to divergent series: it is useful for 
any extrapolation problem for which a limited number of expansion coefficients is 
available. Future developments of the method should include further work on the 
selection criterion for the kernel and the generalization of the method beyond the 
multiplicative form of the kernel. A particularly interesting possibility involves linking 
the present method to the Gammel-Baker (for example Baker 1967) generalization of 
Pad& approximants. It will be apparent to readers familiar with these techniques that 
there is much similarity between our integral representation and the Gammel-Baker 
approach. We are presently studying this connection. 
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Appendix 1. Lagrange multipliers for octic oscillator: a = - a  
The maxent density is exp{-Z:=, A r t ' ] .  

n 3.677 28 
1 4.660 5YE-03 
2 -1.341 74E-06 
3 1.78886E-10 
4 -9.248 48E - 15 
5 1.59402E-19 
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Appendix 2. Lagrange multipliers for hard sphere problem: a =-17.5 

The maxent density is exp{-P?=, AI< ' ]  

I A ,  

0 -0.881 413 
3.788 254 1 

3 -19 566.264 
4 100422.993 
5 -207 176.972 
6 149 166.371 

.___ i i n t . 4 n n  
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